An interesting open-access paper

From PLoS Computational Biology:

Marcus Kaiser & Claus C. Hilgetag. Nonoptimal Component Placement, but Short Processing Paths, due to Long-Distance Projections in Neural Systems.

Synopsis:

What constraints shape the organization and spatial layout of neural networks? One influential idea in theoretical neuroscience has been that the overall wiring of neural networks should be as short as possible. Wire-saving could be achieved, for instance, through an optimal spatial arrangement of the connected network components. The authors evaluated this concept of component placement optimization in two representative systems, the neuronal network of the Caenorhabditis elegans worm and the long-range cortical connections of the primate brain. Contrary to previous results, they found many network layouts with substantially shorter total wiring than that of the original biological networks. This nonoptimal component placement arose from the existence of long-distance connections in the networks. Such connections may come at a developmental and metabolic cost; however, as the analyses reported in this article show, they also help to reduce the number of signal processing steps across the networks. Therefore, the organization of neural networks is shaped by trade-offs from multiple constraints, among them total wiring length and the average number of processing steps.

Advertisements