Scared by the light

Who’d have thought that a protein isolated from pond scum would transform the way researchers investigate the brain? The protein, called channelrhodopsin (ChR), is found in algae and other microbes, and is related to the molecule in human photoreceptors that captures light particles. Both versions control the electrical currents that constantly flow in and out of cells; one regulates the algae’s movements in response to light, the other generates the nervous impulses sent along the optic nerve to the brain. Unlike its human equivalent, the algal ChR controls the currents directly because it forms a pore that spans the cell membrane. When expressed in neurons, it renders the cells sensitive to light, and they can be switched on or off very precisely using lasers.

This discovery led to the emergence of a new field called optogenetics. Early studies showed that the technique can be used to control the behaviour of small organisms such as nematode worms and fruit flies. Last year, Karl Deisseroth‘s group at Stanford University demonstrated, for the first time, that it can also be used to control reward and motivation behaviours in mice. Josh Johansen of the Center for Neural Science at New York University and his colleagues have now taken this one step further. Working in collaboration with Deisseroth, they show that optogenetics can also be used to induce a simple form of associative learning called fear conditioning.

Continue reading

Optogenetic fMRI

OF all the techniques used by neuroscientists, none has captured the imagination of the general public more than functional magnetic resonance imaging (fMRI). The technique, which is also referred to as functional neuroimaging and, more commonly, “brain scanning”, enables us to peer into the human brain non-invasively, to observe its workings and correlate specific thought processes or stimuli to activity in particular regions. fMRI data affect the way in which people perceive scientific results: colourful images of the brain have persuasive power, making the accompanying data seem more credible.

Functional neuroimaging is used widely by researchers, too, with tens of thousands of research papers describing fMRI studies being published in the past decade. Yet, a big question mark has been hanging over the validity of the technique for over a year and, furthermore, the way in which fMRI data are interpreted has also been called into question. Using a novel combination of fMRI and a recently developed state-of-the-art technique called optogenetics, researchers now provide the first direct evidence that the fMRI signal is a valid measure of brain activity.

Continue reading